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A B S T R A C T  

We introduce triples of associative algebras as a tool for building 
solutions to the Yang Baxter equation. It turns out that the class of 
R-matrices thus obtained is related to a Hecke-like condition, which is 
formulated in the fl'amework of associative algebras with non-degenerate 
symmetric cyclic inner product. IR-meLtrices for a subclass of the A~,-type 
Belavin Drinfel'd triples are derived in this way'. 

1. I n t r o d u c t i o n  

The canonical Faddeev Reshet ikhin-Takhta jan  recipe [RTF] for construct ing 

quan tum matr ix  groups is based on a solution to the Yang-Baxte r  equation 

(YBE), which is assumed to be a p r i o r i  known. On the other  hand, the theory 

of quan tum groups, [D], was designed as an environment for construct ing such 

solutions, which are of interest for mathemat ics  and physics. A quan tum group 

or a quasitr iangular Hopf  algebra, Jr, possesses an element 7~ C 7-/C) 7 /ca l l ed  a 

universal R-matr ix  tha t  satisfies the YBE  in ~,>3. The universal R-matr ix  yields 

a family of matr ix  solutions to the YBE  associated with representations of 7/. 

The quasi-classical limit of the YBE, the classical Yang-Bax te r  equation 

(cYBE),  has a clear algebraic interpretat ion in terms of Manin triples, which 

have been classified for the semisimple Lie algebras in [BD]. The possibility to 

quantize an arbi t rary  Manin triple to a quasitr iangular Hopf algebra has been 

proven in [EK]. In the case of semisimple Lie algebras, rather  complicated al- 

though explicit formulas for universal R, matrices have been derived, lESS]. At 
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the same time, one can raise the question what structure particulars of an asso- 

ciative ring itself may responsible for the YBE, without appealing to the intricate 

technique of the Hopf algebra theory. An explicit formula for R-matrices relative 

to sl~ (¢), known as the GGS conjecture, was proposed in [GGS]. It was confirmed 

in lnany cases, [GH, Schl], and a combinatorial proof has been found recently in 

[Sch2]. In the present paper, we pursue another approach to the YBE, making 

use of the cyclic inner product in associative algebras and keeping an analogy 

with Manin triples. Such a point of view has led us to a definition of associative 

Mania (M-) triples, which allow us to explain many examples and quantize a 

wide class of Belavin-Drinfel'd triples associated with the special linear Lie al- 

gebras. In M-triples, R-matrices naturally split into the sum of two solutions to 

the YBE, one of them being a part of the canonical element of the inner product 

and the other belonging to a smaller subalgebra. That  "smaller" solution turns 

out to satisfy a Hecke-like condition in algebras with non-degenerate symmetric 

cyclic inner product. The problem of building R-matrices in a given algebra, 9l, 

is thus reduced to finding an M-triple (if that is possible) with its total algebra 

9Jr being an extension of 91. When 91 = Mat ,  (C), we consider a proper extension 

of Math (C) • Matn (C) for the role of 9J[. 

2. S y m m e t r i c  a lgebras  and  Y B E  

2.1. Throughout the paper, we assume 9R to be a finite-dimensional unital 

associative algebra over C. We suppose that fir is endowed with a synnnetric 

cyclic inner product (., . )~  = (., .), a bilinear map from 99I (~ 9Jr to C such that 

(c~1,(~2) = (c~2,c~1), (c~1c~2,c~3) = (c~2,c~3c~1) for all cti E 9Jr. 

We assmne (., .) to be non-degenerate (the induced natural map 9J[ --q 9)I* is 

a linear isomorphism) and call such algebras s y m m e t r i c .  For unital algebras, 

symmetric cyclic inner products are in one-to-one correspondence with linear 

flmctionals t ~  obeying t~(c~/3) = t~(/~c~) = (c~,~)~ for all c~,fl E fiN. An 

example is a matrix algebra with the trace flmctional. 

Definition 1: Let {c~i} be a basis in 9N and {ai} its dual: (c~i,c~ k) = 5./k (the 

Kronecker symbols). The element* a n  -- ai Q c~ i E g)I ®2, which does not depend 

on the choice of {ai}, is called p e r m u t a t i o n  in 9)I. 

* Implicit summation over repeating upper and lower indices is understood through- 
out the paper. 
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In the endomorphism algebra of the vector space C n with the trace functional, 

the permutation is the flip operator: x ® y ~-~ y Q x E C ~ ® C ~ . In general, one 

has (a ® 3 ) a ~  = a~(/3 © a) for all a,  3 E !fit. 

2.2. The Yang-Baxter equation in ~j~(~3 reads 

(1) RI2R13R23 -- R23R13R12, 

where R E 9~ °2 and the subscripts specify a way of embedding flY/®2 into 9Yt ®3. 

Assuming R = 1 ® 1 + Ar + o(A), A E C, the element r E 9~ ®2 satisfies the 

classical Yang-Baxter equation in ff2°3: 

(2) [r12, ?'13] ÷ [r12, 'r23] ÷ [r13, r231 = O. 

The square brackets mean the commutator [c~1, a2] = CUla2 - o~2o~1, oz i E ~I~. 

PROPOSITION 1 ([BFS]): Permutation satisfies the YBE. 

2.3. Recall, [D], that a Manin triple (g, a, a*) comprises a Lie algebra t~ with 

a non-degenerate ad-invariant symmetric inner product and its two lagrangian 

(maximal isotropic) Lie subalgebras a and a* with the zero intersection. The 

canonical element ai Q/3 ~ E a ~ a* solves the cYBE. To find a quantum analog 

of this construction, consider first the situation when a Manin triple, (9)~, 91, 91"), 

is formed by the commutator Lie algebras of associative algebras, and the ad- 

invariant two-form is at the same time a cyclic inner product in ff.~. Consider 

91 and 91" as bimodules over each other, the left, (t>) and right (4) actions being 

induced via duality from the regular right and left representations. The product 

in 9J~ is expressed by the formula 

(3) e /3=ac>/3÷a<~,  3 a = 3 ~ a + 3 , ~ a ,  aE91, /3E91". 

Associativity is encoded in the following two equations: 

(4) 

(5) 

(~1 ~/31, e2 ~ 32) + (~1 ~ 31, ~2 ~ 32) 

= (Zl > ~2, 9~ ~ )  + (~1 ~ 2 ,  Z2 ~ ~1), 

(~2 D o/2, 0~1 [:>/~l) + (0~1 <]/~1, ~2 <] c~2) : (0~2Oll,/31/~2), 

for all (h,  a2 E 91 and ~1,/32 E 91". 

Conversely, given associative algebras 91 and 91" dual as linear spaces let us 

extend their multiplication to the linear sum 91+ 91" by formula (3). This makes 

91 + 91" an associative algebra, 91 ~ 91", provided the actions <~ and ~, satisfy 
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conditions (4) and (5). Then the natural pairing between 92 and 92* induces a 

non-degenerate symmetric cyclic inner product in ~ = 92 ~ 9g* such that 92 and 

9.1" are isotropic. The following statement holds true. 

PROPOSITION 2: The canonical element as ® ~i E 92 ® 92* C ~j~(~2 satisfies the 

YBE. 

Prod: This is a corollary of Proposition 4 below. | 

Remark 3: Let us note that 92 from the triple (KII,21, 92*) is an infinitesimal 

bialgebra in the sense of [JR], i.e., equipped with a coassociative comultiplication 

A: 92 ~ 92 ® 92 satisfying the cocycle condition 

(6) A ( ~ 2 )  = ( 1 0  ~1)/ '(~2) + A(~1)(~2 O 1) 

for a l ,  a2 E 92. The map A is dual conjugate to the multiplication in 92*. It is 

easy to see that equation (6) is equivalent to condition (5). A coproduct is called 

a coboundary if A(a) = (1 Q c~)r - r((~ Q 1), where r is an element from 92 C) 92. 

For A to be coassociative, r is required to satisfy the associative Yang-Baxter 

equation, [A1], 

(7) r12r13 -- r23 r l2  + r13r23 : 0. 

One can show that 92 ~ 92* is a coboundary infinitesimal bialgebra with 

r = a i ®  a s. It may be called a d o u b l e  of 92, by analogy with the Lie 

bialgebra double. 

Example 1: Due to condition (5), the algebras 9g and 92* cannot be simultane- 

ously unital or they would consist of the zero elements only. Nevertheless, the 

algebra 92 ~ 9g* may have unit. Then the sum 

(8) 1 G 1 + ~ai G (~i 

is also a solution to the YBE for an arbitrary value of the scalar parameter A (el. 

concluding remarks). This is true because (9:R, 92, 92*) is a Manin triple of the 

corresponding conmmtator Lie algebras. Let us give an example, rather infinite- 

dimensional, describing the XXX-spin chains in the theory of integrable models 

IF,KS]. It is related to the Yang nmtrix 

P 
(9) R(z,  u) = 1 ® 1 + A - - ,  

Z - - i t  
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where P is the conventional permutation operator acting on C ~ Q C n. The 
~k 

element ~ is a brief way of writing the formal power series ~k>0 ~k+~. It 

represents the canonical element of pairing Reso between C[z] and ¼C[-~]. In 

this example, the algebra 91 ~ 91" is formed by the Laurent polynomials with 

matrix coefficients, but R(z,  u) requires extension by the Laurent series (and an 

appropriate completion of tensor products). 

2.4. Propositions 1 and 2 can be understood with the help of the following 

construction. Let ~±  be two linear subspaces in 9)/mutually dual via the inner 

product. There exist two bijections ~ ±  --+ ~ giving rise to the projectors 

(lO) 7r+: ~ --+ ~+, ~ + : ,  ~ ~(~,/3~),  

(11) ~r_: 9Jr-+ ~ _ ,  7r_: # ~-~ (ai , lz) f l  i, 

where {a~} is a base in fit+ and {fli} its dual in ~ _ .  The choice of (c~i} does not 

affect 7r+. Consider the subspaces 

(12) ~ ±  : {/t • ~)J~ [ 71"=l=(OqFt)O~2 ~- O~lTf:k(/tO~2),VOQ, O~ 2 • ~Y'~q-}. 

They contain the normalizers for ~± ,  i.e., the maximal subalgebras in ~)/ for 

which ~ =  are bimodules. In particular, fft_~ C -~± if fft_~ are subalgebras. 

PROPOSITION 4: Suppose 90t is spanned by fr~_ and 9Jr+ as a linear space. Then 

the canonical element Q = a~ ~9 fl~ • 91+ ® 91_ c 92;t ®2 satisfies the YBE. 

Proof: Let us check the YBE by pairing its nfiddle tensor component with 
elements of fiR+ and 9~A_ separately. That will be sufficient for the proof, since 

they span the entire ffdt. For arbitrary It E 9)/+, the Yang-Baxter equation 

a~aj ~') ( ~  ak, p) o/3Jfl k = ajc,~ o (ak/3 ~, . )  o flk /~j 

can be rewritten as 

~iOz j ~ (fli (~k[A) ~ flj flk : O~jOzi (~ (fli [AO~k) (~) flk flj 

and therefore as 

This equation holds by the definition of ~ + ,  cf. formula (12). Similarly, one can 

check the YBE by pairing the middle tensor component with an element from 
9Y~_. | 
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Proposition 4 is an apparent generalization of Proposition 1, because then 

fit± = ~ ±  = ffi. It also implies Proposition 2: then one has 

In either case the sum of normalizers of ~ +  gives the whole 911. Let us present 

an example where the normalizers are quite small whereas ffi± coincide with ffi. 

Example 2: Take ffi to be the algebra Mats (C) of n x n complex matrices and 

denote by e~ the standard matrix base elements. Let a be a permutation of the 

set of indices I = { 1 , . ,  n}. Put  9l+ = span{e~(i)}iei and 91_ = span{e~, ~ }, I; •. (.) ~ 

then the canonical element with respect to the trace pairing is 

Q ~ e~(i) i 
= (~ ecr(i). 

ieI 

k i Now observe that  ffi+ = flit. Indeed, for any matrix u = u i e k E ffi one has 
z r + ( u e ~ ( i ) )  a(i)  a(i)  " " = u x(i)e i and 7r+(e~(i)u) = u~e~ 0). So one gets the identity 

, a(i)  , a(k)  ±ca(k) a2(k) a ( k ) c a ( k )  a2(k)= eT(i)Tr+(ueak(k)). 
~ '+(e  i u ) e  k : l l io  i e k : Ua(k)O i e k  

Note that the normalizers of ~ ±  consist of diagonal matrices only• 

Proposition 4 supplies us with solutions to the YBE that may seem to be quite 

distant from those related to quantum groups• We will use it for constructing 

R-matrices of real interest• 

3. Associative Manin triples 

3.1. Let a symmetric algebra flY[ be a linear sum (not necessarily direct) of its 

two subalgebras, ffi = ffi_ + ffi+. Let 91+ C ffi± denote the kernels of the inner 

product restricted to ffi±. They are two-sided ideals in ffi±. 

Definition 2: We call (ffi, ffJt+ffi_) an associative Marlin triple (or simply 

M- t r i p l e )  with diagonal :9 = ffi+ C/ffi_ if the composition maps 

(13) 

are isomorphisms. A triple is called t r iv ia l  if it coincides with :9 and disjoint 
if :9 = {0}. 
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PROPOSITION 5: Let (ilJl, flJl_, !}Jl+) be an M-triple. Then 

(1) 9I_ is dual to 9I+ with respect to the inner product, 

(2) 9I± are ~-invariant, 

(3) D is orthogonal to 91_ + 91+. 

Conversely, let lot be decomposed into the linear sum KJ/ = 91_ + D + 91+ of 

subalgebras fultilling these three conditions. If flJl is unital and 1 E ~ ,  then flJl 

and 93I+ = D + 91± form an M-triple. 

Proof Conditions (2) and (3) readily follow from Definition 2. To prove condi- 

tion (1), observe that ~ N 91~: = {0}. This is a consequence of the isomorphisms 

between D and 9/t+/gI+, cf. formula (13). By the same argument, restriction of 

6,-) to ~ is non-degenerate. Combining this with condition (3) we find that  91± 

are dual to each other, being isotropic subalgebras with zero intersection. 

Conversely, suppose the algebras D and 91± in the linear decomposition of 9)I 

satisfy the conditions of the proposition. Condition (3) implies that restriction 

of (., .) to ~ is non-degenerate. Since ~ contains unit, the subalgebras 91+ 

are isotropic. Indeed, for all O,~l,(:t 2 E ~J'~-l- one has ( a l , a2 )  = (alc~2, 1) = 0. 

Put  gR+ = D + 9l±; then 91± are the kernels of (.,.) restricted to ~rt+ and 

::D = 921/±/91±. i 

3.2. Associative Manin triples form a category, AT,  with a subcategory ,47-o 

of trivial triples. Morphisms in A T  are algebra maps preserving the elements of 

triples. The category AT" admits the following operations with objects: 

(1) Transposition 9:g'. 

(mr', ~ ' ,  ~&) = (~, mr+, mr_), t~ ,  = t~ .  

(2) Direct sum 9)I 1 ~ 92I 2. 

(~ '  • ~x 2, mr; + ~ ,  ~_ • ~_), t ~ e ~ 2  = t ~  • t ~ .  

(3) Tensor product by objects of .AT"o. 

(9.[@9J/,~6"~9)l_,9.1@9)I+), 9.1E ATo,  t ~ e ~  = t~ @t~ .  

(4) Double D(9:R). 

D(9:R) = ~ @ 9J/@ 92R, D(gJ/)+ = ~ ® 9J/® Id(gJ/), 

D(DI)_ = ~ @ D @ Id(~)  + {0} @ 9I+ @ 91_, 

tD(ml) = t~o • t ~  ~ trot. 
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In the definition of D(gJt)_ we identify the first and last copies of ~ .  The 

diagonal of this triple is ~ • Id(~)  ® Id(~) .  In the definition of to(N) , 

we assume t~ = twt[~, and the restriction of tD(~) to the third addend 

coincides with - t ~  (that is reflected by the notation). 

(5) Skew double S(9)I). This is a disjoint triple 92l ~ 0Jr* of an algebra 9)I and 

its dual 9)1" equipped with the nil multiplication. 

4. Assoc ia t ive  M a n i n  triples and YBE 

4.1. In this section we use M-triples introduced in Section 3 to construct solu- 

tions to the YBE. Let us give one more definition before formulating the basic 

statement of the paper. 

Definition 3: An element S E ffJt ®2, where ffJt is a symmetric algebra, is said to 

satisfy the Hecke  c o n d i t i o n  in 93I ®2 if 

(14) $21S - a ~ S  -- A2(1 @ 1) 

for some scalar A. 

It is convenient to put 1/A -- w -- q - q-1 assuming q2 ~ 1 and A ~ 0. For 

the matrix algebra 93~ -- Matn (C) with the trace pairing, this is the conventional 

Hecke condition. Then c~ 2 = 1@1 and one can combine S with aN getting a close 

quadratic equation on a ~ S .  In general, the permutation am is not invertible, 

[BFS]. 

THEOREM 6: Let (ff.R,~rt_,OY~+) be an M-triple with the diagonal ~ .  Then the 

canonical element Q E 9I+ ® 9~_ with respect to the inner product satisfies 

the YBE. Let S E ~®2 satisfy the YBE  and Hecke condition. Then the sum 

R = S + Q E 9Y~ ®2 is a solution to the YBE. 

Proof." The first assertion follows from Proposition 4, where we put, ~ +  -- 9~j:. 

Indeed, 91+ are bimodules for 93I+ C 9~+ and 9Y~_ + 9)~+ -- 9Y~. 

Let us prove the second assertion. The element Q interacts with elements of 

like the permutation: (61 @ 52)Q = Q(52 @ 51) for all ill, 52 E ~ .  Therefore S 

and Q satisfy the system of equations 

(15) S12S13Q23 : Q23S13S12, Q12S13S23 = $23S13Q12. 

The Yang-Baxter equation (1) for the sum R = S + Q reduces to the equation 

S12QI3Q23 ~- Q12SI3Q23 q- Q12Q13S23 -[- S12Q13S23 
(16) 

=Q23Q13S12 -k Q23S13Q12 -[- S23Q13Q12 -[- $23Q13S12, 
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if S is a solution to the YBE. Put  S = 5i ~D 5i c ~o2  and rewrite (16) as 

19 

5jOe j @ ~i 0¢ k @ /~j /~k 4- Oci(~j @ /~'i oz k @ ~j ~k 4- aiaj  @ /~i ~k @ ~j ~k 

4- (~iOZj @ ~i ~k @ [~j ~k 
(17) 

It  suffices to check this identity by separately pairing its middle tensor component 

with elements from 91± and ~ since they altogether span 9Yr. 

STEP 1 (Pairing with a E fit+): 

0 4- O~kO~(~ j @ ~jflk 4- (~kCeCej (~) /~j~k + 0 = 0 + (~j(~C~ k @ flk~j + OzjOz~ k @ ~kflj 4- O. 

STEP 2 (Pairing with/3 E fit_): 

6iC~ j @ /~j /~i  4- C~i(~j @ fli fl~j 4- 0 4- 0 = O~j6 i @ ~i flflj 4- 6jO~ i @ /~i fl~j 4- 0 4- O. 

STEP 3 (Pairing with 6 E ~) :  The first and third terms on each side turn zero. 

In the fourth terms, we perform the substitution S -+ a ~  of the last, factors, 

employing the Hecke condition. For example, 

$12Q13S23 = S12S21Q13 = ( S 1 2 ( a v ) 1 2  4- Ae)QIa = S12Q13(crv)23 4- A2Q13 • 

The last term will appear on both sides of the equation and thus vanishes. The 

resulting equation is 

0 4- O~i~ j @ ~j(~/~i 4- 0 4- ~iO~y @ /~j~i  ~- 0 4- (~jO~ i @ /~i(~j 4- O 4- Olj(~ i @ ~i(~/~y, 

and it holds identically. | 

4.2. Introduction of associative Manin triples is motivated by the idea of re- 

ducing the YBE in ff~ to that  in a smaller algebra ~ C fiR. Propositions 1 and 

2 describe two extreme cases of trivial and disjoint triples providing quite exotic 

examples. To find more interesting solutions, one has to admit  non-trivial 

and 9I± simultaneously. Such applications are considered in the remainder of the 

paper, and this section is completed with the following statement.  

PROPOSITION 7: Let ~ be an M-triple with the diagonal ~ and S satisfy the 

Hecke condition in ~ ' /2 .  Then, the element R = S + Q satisfies the He&e 

condition in 9Jl ~2 i f  and only if  cr~Q + Q2 = O. 

Proof'. Taking into account $21Q = QS and a ~  = a~  + Q + Q21, one has 

R21R = $21S 4- S2,Q + Q2,S  + Q,2IQ 

= A(1 ~7) 1) 4- crvnS 4- Q'21Q = A(1 (:0 l) 4- a ~ R  - a v Q  - Q2 
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as required. | 

Example 3 (Jimbo R-matrix for sln (C), [J]): 

n n 

( 1 8 )  R n  = q e i @ e i + e i @ ej ej @ ei ,  
i = 1  i,j=l i < j = l  

if one puts 

9)I = Matn(C), 

One can build, by recursion, 

c 0 = q - - q  - 1  , 

n - 1  n n - 1  n 
C,,ei i 9 J r + :  ~--~ C.e}+~--~ n and 9Jr_= ~ C_~jnt-~C.~ ~. 

i , j=l i = 1  i , j=l i = 1  

The functional t~t is taken to be the umtrix trace. Thus the isotropic subalgebra 

9l+ is formed by the last matrix column without the bot tom entry. Its dual 

91_ is spanned by the bottom matrix line excepting the right-most diagonal 

element. The subalgebra ~ is Math_: (C) ® C.e n . The one-dimensional R-matrix 

Rt = qe n Q e n fulfills the Hecke condition in Mat: (C). Suppose, by induction, 

that the same holds true for the matrix Rn_: E Mat~_21(C). The direct sun: 

R n - :  + R1 satisfies the Yang Baxter equation but not the Heeke condition since 

the unit matrix In Q 1~ is not equal to the sum 1~-1 @ ln-1 + 1: ® l l .  To fix the 

situation, we put coS = R ~ - I  + R1 + Pn-1 ® P1 + P1 ~) Pn-1, where Pn- :  and P: 

stand for the projectors from C n to C n - :  ® {0} and {0} ® C. Thus defined, S 

solves the Yang-Baxter equation and satisfies the Hecke condition. The matrix 
x - , n - -  1 i 1 5R~ Q = 2_,i=: en ® e~ ~ fulfills the condition of Proposition 7, so S + Q = is the 

Hecke matrix by induction. 

Let us consider another representation of Mat~ (C) as an M-triple, taking 9Jr+ 

to be the subalgebras of upper and lower triangular matrices. Then ~ is a 

commutative algebra, C n , formed by diagonal matrices. To construct a solution 

to the YBE, following Theorem 6, we should satisfy the Hecke condition (14) for 

the symmetric algebra ~ = C ~ . 

n PROPOSITION 8: A Hecke matrix in C ~ ®C n has the form S -- ~ i , j = l  _ik~i ~ k  te e i ~ e k ,  

where 

(19) a i i=  +q+l/co and a ik = bik/co, bikb ki = 1 

for i ,  k =  l , . . . , n ,  i C k. 

Proo~ The Hecke condition (14) on S = aikeii ~) e~, boils down to the system of 

equations 

( 2 0 )  aiiaii _ a i i  = .~2 aikaki = .~2, k ¢ i. 
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If one puts A = 1/co, then the general solution to this system is given by (19). 
| 

Note that  the matrices cos and coR tend to 1 ® 1 as q -+ 1 if one takes aii = q/co 

for all i = 1 , . . . ,  n. Otherwise one obtains non-quasiclassical solutions, which are 

not relative to Lie bialgebras. The standard R-matr ix  (18) corresponds to the 

choice b ik = 1. The general solution deviates from (18) exactly by the Reshetikhin 

diagonal twist, [R]. 

ExampIe 4 (Baxterization procedure): The baxterization operation converts a 

constant matr ix  solution, R, of the YBE to that  with a spectral parameter,  

(21) R ( z ,  tl,) : z S  - ? 1 R 2 1 1 ,  

provided R satisfies the conventional Hecke condition 

(PR)  2 = co(7)R) + 1 Q 1 

with the matr ix  permutat ion 7 ). The parameters  z and u are usually represented 

in the exponential form; then (21) is a trigonometric solution to the YBE. Set 

9l+ = zMat~ (C) [z], 91_ = ¼Matn(C)[~], and ~ = Mat , (C) .  The inner product 

in 93I is given by the formula (Az k, Bz  m) = Tr(AB)a k,-m. Thus we have built 

an M-triple on Matn(C)[z, ±] Now, put S = R and Q = ~' P.  The result wilt Z " ~-  Z--Z$ 

be proportional to (21) because cop = R - R~I 1. As in the case of Yang matrix 

(9), one has to extend the Laurent polynomial algebra by the Laurent series. 

5. O n  q u a n t i z a t i o n  o f  B e l a v i n - D r i n f e l ' d  t r i p l e s  for  sic(C) 

5.1 (BELAVIN DRINFEL'D TRIPLES). Consider a semisimple Lie algebra g with 

the Car tan subalgebra [1 and a polarization g = n_ +I t+n+.  Let A and A + denote, 

respectively, the systems of all, positive, and negative roots. Recall, [BD], that  

non-skew-symmetric classical r-matrices associated to g are in correspondence 

with the Belavin-Drinfel 'd (BD) triples (F1, F2, r) consisting of two subsets of 

positive simple roots Fi, i = 1, 2, and a bijection w: F1 --+ F2 preserving the 

lengths of the roots with respect to the Killing form. The map v is assumed 

to obey the nilpotency condition: for every a C F1 there is a positive integer 

k such that  rk-l(c~) e Pl and rk (a )  • F1. It  follows from [RS] (see also [BZ]) 

that  the double Lie algebra D(g) is isomorphic to the direct sum fl ~ ~ with 

tile invariant inner product given by the difference of the Killing forms on the 

two addends. The geometric descript, ion of g* as a Lie subalgebra in D(g) is as 
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follows, [S]. Let Ai C A be the subsystems of roots generated by Fi, i = 1, 2. 

Denote by g~ C ~ the semisimple Lie algebras with the root systems A~, and the 

Cartan subalgebras [~i. The bijection ~- is extended to a Lie algebra isomorphism 

T: gl --+ g2 such that gl @ ~-(gl) has the trivial intersection with the diagonal 

embedding g ® Id(9). In other words, r has no stable points. The isotropic Lie 

subalgebra (gl + n+) • (Id(gl) + n_)  lies in g*, and its complement (whose exact 

form is irrelevant for our consideration) in g* belongs to ~ • II. The classical 

r-matrix for 1~ is recovered from the canonical element of the pairing between 

g ® Id(g) and 1~* by projecting g ® g to one of the addends. 

5.2 (ASSOCIATIVE BD TRIPLES). We restrict our further consideration to the 

case g = sln(C.). The triangular decomposition of g is taken to be that into 

the diagonal, strictly upper- and lower-triangular matrices. The double D(g) is 

represented in the direct sum of two matrix algebras 9t = Math (C). The cyclic 

inner product in 912 is induced by the functional t~2 = Tr @ Tr, the difference of 

the corresponding traces. 

Denote by ,4([) the associative envelope of a Lie algebra [ in 912. Clearly 

A(I~ (t~ Id(l~)) = 91 ~ Id(91), while A(~t~), i = 1, 2, are block-diagonal subalgebras 

in 91. Suppose that ~- may be extended to the (unique) algebra isomorphism 

(22) +: x ( ~ )  -~ x(92). 

That  is the case when and only when ~- preserves the orientation of the connected 

components in Fi that is induced by an orientation of the Dynkin diagram. Such 

Belavin Drinfel'd triples are called assoc ia t ive  in [Sch3]. 

Denote by ~ the subalgebra of diagonal matrices in 91. By projection to an 

ideal in ~ or 2) 2 we understand the projection along the complementary ideal. 

Let f" C 91 denote the set of diagonal rank-one matrix idempotents 7/i = e~ E 2~, 

i = 1 , . . . , n ,  and ['i = F n A(fJi),  i = 1,2. The homomorphism ~ defines a 

bijection f'l --+ F2, for which we use the same notation. We impose a condition 

on this bijeetion assuming for every r/E I'1 there is the smallest positive integer 

m(r/) such that ~m(n)(r/) ¢ f ' l .  Like in BD triples, this condition means that the 

map (22) has no stable points. This requirement holds, for example, if f 'l Clf'2 = 

or ~(r/i) = 7~k ~ k > i. 

5.3 (FROM ASSOCIATIVE BD TO M-TRIPLES). Denote by ~ the associative 

subalgebra in (A(I~I) + n+ ) • (A(g2) + n_ ) obtained by identification of A(gl ) and 

A(g2) via -L We define ~1 and 02 to be the ideals in .~2 spanned by f ' \ I ' l~{0}  and 

{0} o F\l~2 correspondingly. Both ~i have dimension n - m ,  where m = # f ' l .  The 

subspace ~3 is a two-sided module over the algebras ~i, so the sum ~B + ~1 + ~2 is 
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closed under the multiplication. Its intersection 0 with 9t® Id(ff¢) is a subalgebra 

in ~3~. 

LEMMA 9: Projectors 7i: 0 -+ 0i, i = 1, 2, have the full rank n - m. 

ProoE We will prove the s tatement  only for i = 2 in view of the symmetry  

1 +~ 2, e +~ ~-1. Let ~ ¢ F\F2. Define the sets Fn = {~,~(~) , . . . ,em(n)(~)} 

if rt ¢ F~\F2 and Fn = {7/} in case ~ ¢ F\(F~ U F~). They do not intersect 

for different ~ and clearly ]~ n (F\P2) = ~. The one-dimensional subspace in 

® ~ spanned by the element ( ~ ¢ ~ , ,  ~) ~ ( ~ ¢ ~ ,  ~) is evidently contained in 

9l® Id(9~). It  is also contained in ~ + 01 + 02 because its projection to CF1 ® CF2 

lies in the subalgebra of ~ spanned by ]~, ~) e(F~). Hence it is a subspace in 0, 

and its projection to 0~ is C~f. | 

COROLLARY 10: Algebras 0~, i = 1, 2, and ~ are two-sided O-modules. 

Proof: The statement is obvious in what concerns 0i, because they are ideals in 

-9 • -9. The sum ~ + 01 + 02 is a direct sum of modules over its subalgebra of 

diagonal matrices, which contains 0. This proves the statement for ~ .  | 

Let us introduce the algebras 

~ =  02 ~ + ~ + ~ ,  91+ = 72(0) + {0} + 72(0) + {0} ~ ~ ,  
(23) 

= 72(0) • 0, 91_ = {0} + N @ Id(iR). 

The non-degenerate cyclic inner product in ~ is defined via the functional 

t ~  = t,~ 2 • t~2 = t02 ~ t~ ~ t~,  where t~ 2 is t~ restricted to 02. 

THEOREM 11: Let (F1, F2, T) be a BD triple and T extends to the isomorphism 

"r: A(gl)  -~ A(g2) of associative algebras with no stable points. Then, the 

algebras 91l and 9[Ii4- = ~ + 9l+, where ~ and 914- are defined by (23), form an 

M-triple. 

Proof." First of all observe that  9J/is a symmetric algebra. It  is easy to deduce 

from Lemma 9 that  9I+ n ~ = 91+ N 91_ = {0}. Further, dim914- = n and 

dim ~ = dim 0, from which we conclude that  9)I = 91_ + ~ + 91_. Since ~ is a 

unital subalgebra in ilJl, it suffices to satisfy the conditions of Proposition 5, in 

order to prove the theorem. Observe that  91+ are ~-invariant.  Tha t  is obvious 

for 9l_ and follows fl'om Corollary 10 for 9I+. It  is easy to see that  91+ are 

isotropic. Along with ~-invarianee, this implies that  914- are orthogonal to ~ .  It 

remains to show that  the pairing between 91_ and 91+ is non-degenerate. This 
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is a consequence of the following two facts: firstly, the restriction of the inner 

product to ~ is non-degenerate and, secondly, fit± are isotropic and orthogonal 

to ~ .  | 

5.4 (THE R-MATRIX). To build the R-matrix associated with a BD triple 

specialized in Theorem 11, let us compute the element Q E fit+ ® fit_ first. 

Let e~ and f~, 3, E A+, denote respectively positive and negative root vectors 

normalized to (e~, re) = 1 with respect to the trace pairing. We can choose them 

among the standard matrix base {e~}. Set ÷1 = f and f~ = ~-1. Assuming 

i = 1, 2, let us define the functions mi: A --~ Z in the following way. For 7 ~ Ai 

we set m~(7) to be the smallest positive integer such that ?~(7) ¢ Ai; if 7 ~ A~, 

we put mi(7) = 0. We also introduce two-valued functions, 0~, on A~ by setting 

8~(7) = 1 if 7 ~ A~ and 0~(y) = 0 otherwise. 

By construction (23) of fit+, the element Q coincides with the canonical element 
of the pairing between ~ ® Id(g) and ~* in the off-diagonal sector. This part of 

Q includes the following two addends: 

(24) 

(2s) 

m2(~) 

(0 @ e- r @ 01(7)e~(.r) ) ® E (0 ® f~-k(~) @ f~-k(.r)), 
k=0 

ml('r) 

--(0 @ 02(7)ff-~(~) * f~) @ E (0 • e~k(.r) @ e~k(.r)). 
k=0 

The part of Q involving diagonal matrices comprises 

(26) - ( 7  • 0 7) e (0 • • 
m(~) 

(27) - ~ (q @ 0 @ 7) 0 (0 @ +k(~) @ +k(q)), 
k----0 

m(~) 
(281 - ~ (0 • f - l (~ )  @ ,~) @ (0 @ f~(q) @ *k(~)), 

k=0 

(29) - (0@ f-l(~/) @ 7) ® (0®V @ V), 

¢ r2 u 

7t r2 n Pl, 

The element Q is the sum of terms (24)-(29). 

To construct the R-matrix on the base of Theorem 11, we should satisfy the 
Hecke condition for some S E ~®2 This problem is solved in Proposition 8, 

formula (19), since ~ is isomorphic to C ~-m as a symmetric algebra. It follows 

from the proof of Lemma 9 that the isomorphism C n-m --+ ~ is given by the 
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correspondence 
m(.) 

k,i=0 

Here, we assume re@l) = 0 if ~ ¢ F~. 

Finally, to obtain the R-matr ix  in fit ®2, let us apply the projection 7~: 

9~ -+ {0} @ iR @ {0}. The result is 

(30) R = @ + e 

where 

(31) ( r ® ~ ) ( S )  = 

m(~7~) m(v~ ) 

m(u) 

(32) Z + E e oS + E %Aft,. 
a,~EA + , a ~  

The symbol ~ means the partial ordering in A+ which is defined by v: a -~ 7 

if ~-k(a) = 7 for some k > 0. The numbers a ij provide the principal solution 

of the Hecke condition for C ~-m as stated by Proposition 8. Let us emphasize 

that,  besides quasi-classical R-matrices, we also obtain those which do not tend 

to unit as q --+ 1. For that,  we take aii = _q-1/w rather than q/w for some 

i = l , . . . , n - m .  

Example 5: The formulas (30)-(32) give the standard J imbo R-matr ix  (18) 

corresponding to empty Fi. Indeed, the first and third terms in the expression for 

@r@~)(Q) vanish, and summation over l > 0 and k > 0 in 0r®Tr)(S) is cancelled. 

Another extreme possibility is the BD triple with F1 = {71~, ~2 . . . .  , Yn-1}, F2 = 

{~]2, Y3,. . . ,  Yn}, and the isomorphism ~: ~i ~-+ Yi+I. It  leads to the solution to 

the YBE called the Cremmer-Gervais  R-matrix,  [CG]. In this case, the algebra 

is one-dimensional, so the Hecke condition is evidently fulfilled for any scalar 

S = A. Thus we come to the one-parameter Cremmer-Gervais  solution in the 

form A + (~ @ 7r)(Q). This is in agreement with [H1]. Put t ing A = q/w, we get 

the R-matr ix  of [H2] for the special value of the parameter  p = 1. 
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6. C o n c l u d i n g  r e m a r k s  

6.1. Let us note that a representation of the Cremmer-Gervais R-matrix by 

the sum of two solutions to the YBE was used in [H1]. Such a representation 

reduces the YBE to a relation between those solutions (S and Q in our notation). 

The associative Manin triples introduced in the present paper is an algebraic 

construction designed to solve the relation of a special type, namely, expressed 

by equations (15) and (16). We gave numerous examples of such triples including 

those arising in the Lie bialgebra theory and the Belavin-Drinfel'd triples for 

s l (n) .  We did not incorporate all the BD triples into our scheme, but only those 

falling into the class appearing in the theory of associative YBE, [SchJ]. We 

expect that our construction is applicable to all the BD triples considered in 

[Sch3]. 

6.2. We would like to demonstrate how an extension of our construction ex- 

plains deformation of the Yang R-matrix with a constant unitary R-matrix, 

[BFS]. According to [BFS], the unit 1 ® 1 in formula (9) may be replaced by any 

matrix S E Matn(C) ® Matn(C) subject to the unitary condition S21S = 1 ® 1. 

Below, we propose a construction representing the R-matrix as the sum S + Q 

of two solutions to the YBE satisfying equations (15) and (16). However, the 

underlying mechanism is different from what was employed in Theorem 6. 

Consider a disjoint triple 9Jr = if)I_ ~ fiR+ and select the subspaces fiR~_ of 

"constants" in fiR+ consisting of elements annihilated by the actions t> and <~: 

fiR+ ~ fiR~: = {0} = 9Yt~: < fiR~:. The subspaces 9Y~. are subalgebras, as follows 

from (5), and the sum fiRc= fiRc_ +fiR~_ is direct. In the case 91/= Matn(C)[z, ~], 

fiR+ = Math (C)[z], 93t_ = !Math  (C)[ l_]z considered in Example 1, 9Y/c coincides 

with Mat,(C).  From (3) one has ( a ® 3 ) Q  = Q(3( 'ba )  for c~,/3 E fiRc. Therefore 

equations (15) are satisfied if S E fire ® fiRc. If S solves the YBE, then the 

YBE for S + Q is equivalent to (16). Since Q solves simultaneously the classical 

and associative YBE (of. formulas (2) and (7)), equation (16) holds, provided S 

satisfies the unitary condition SS21 = 1 ® 1. 

6.3. An analysis shows that the developed technique cannot be applied, as it 

is, to the other series of simple Lie algebras. An extension of our approach to 

that case is an open problem. 
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